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1 Knock out Barrier option

Reading material: Ocone’s Lecture note 5 part 1, Shreve’s 7.3.3

Let S(t) satisfies

dSt = rStdt+ σStdWt.

Consider the Knock-out Barrier option with barrier b and strike price K:

VT = (ST −K)+1{max[0,T ] St≤B}.

The risk-neutral price V (t) can be expressed as

V (t) = E
[
e−r(T−t)VT |F(t)

]
= 1{max[0,t] St≤B}E

[
e−r(T−t)(ST −K)+1{max[t,T ] St≤B}|S(t)

]
.

To obtain an explicit formula for V (t), we need to evaluate

E
[
e−r(T−t)(ST −K)+1{max[t,T ] St≤B}|S(t)

]
= E

[
e−r(T−t)(ST −K)+|S(t)

]
− E

[
e−r(T−t)(ST −K)+1{max[t,T ] St>B}|S(t)

]
. (1)

Since E
[
e−r(T−t)(ST −K)+|S(t)

]
is already given by Black-Scholes formula, we only

need to evaluate

w(t, x) := E
[
e−r(T−t)(ST −K)+1{max[t,T ] St>B}|S(t) = x

]
:= E

[
e−r(T−t)(ST −K)1ST≥K1{max[t,T ] St>B}|S(t) = x

]
(2)
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Remark 1.1. The split in Equation (1) may seem non-intuitive. We will see why

later. It suffices for now to observe that to compute the Expectation we need the

joint distribution between 2 Random variables: S(T ) and Y (t) := max[t,T ] S(t).

Because of their interaction, it is easier to compute their joint distribution in the

form P(S(T ) ≥ x, Y (t) ≥ y) than P(S(T ) ≥ x, Y (t) ≤ y).

1.1 Step 1: A first rewrite of w(t, x)

Denote

α :=
r − 1

2
σ2

σ
.

Then for s ≥ t

S(s) = S(t) exp
[
σ
(
W (s)−W (t)

)
+ α(s− t)

)]
.

The term inside the exponential (modulo the σ ) is just a Brownian motion with

drift starting at time t. So we denote it by a new name to reflect this fact:

Ŵ (u) := W (t+ u)−W (t) + αu, u ≥ 0

M̂(u) := max
s∈[0,u]

Ŵ (s).

Note that for s ≥ t

max
u∈[t,s]

S(u) = S(t)eσM̂(s−t).

Then for s ≥ t we have

S(s) = S(t)eσŴ (s−t)

1S(s)≥K = 1
Ŵ (s−t)≥ log(K/S(t))

σ

1maxu∈[t,s] S(u)>B = 1
M̂(s−t)> log(B/S(t))

σ

Then substituing this into Equation (2), replacing S(t) = x gives

w(t, x) = e−r(T−t)E
[(
xeσŴ (T−t) −K

)
1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}

]
= xe−r(T−t)E

[
eσŴ (T−t)1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}

]
−Ke−r(T−t)E

[
1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}

]
. (3)

Remark 1.2. Note that the expression in (3) involves the distribution of a Brownian

motion with drift and its running maximum. Studying Brownian motion with drift

is inconvenient. But by applying a change of measure (via Girsanov’s theorem), we

can find a different measure such that under it, Ŵ is a BM. So that’s our next step.
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1.2 Apply Girsanov’s Theorem to transform Ŵ into a BM

Since the expression (3) involves only expectation, we only need to pay attention to

the distribution of Ŵ (t). So we can assume there exists a Brownian motion

W̃ (u), 0 ≤ u ≤ T − t (tilde to distinguish with our original BM W ) such that

Ŵ (u) = W̃ (u) + αu, u ∈ [0, T − t].

Since Ŵ has drift term αt, our change of measure kernel is

Z(T − t) = exp[−αW̃ (T − t)− α2

2
(T − t)].

Denoting our original measure as P and define

dQ := Z(T − t)dP,

then note that

dP = Z(T − t)−1dQ

= exp[αŴ (T − t)− α2

2
(T − t)],

So that

w(t, x) = xe−r(T−t)EQ
[
eσŴ (T−t)1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}e
αŴ (T−t)−α

2

2
(T−t)

]
−Ke−r(T−t)EQ

[
1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}e
αŴ (T−t)−α

2

2
(T−t)

]
= xe−(r+

α2

2
)(T−t)EQ

[
e(α+σ)Ŵ (T−t)1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}

]
−Ke−(r+

α2

2
)(T−t)EQ

[
eαŴ (T−t)1{Ŵ (T−t)≥ log(K/x)

σ
}1{M̂(T−t)> log(B/x)

σ
}

]
, (4)

where now what we have gained is Ŵ is a Brownian motion under Q.

Remark 1.3. Note that the expression (4) is just some Expectation involving the

exponential of BM, over the set where the BM and its running maximum are larger

than some values. When we study barrier option with different paramters, such

Expectation will appear very often (and possibly in other contexts in which the

running max is involved, say the Lookback Option). Think of the function c(t, x) in

the Black-Scholes formula and how it appears in our evaluation of the Euro call

option in Chapter 11 for example. So it is convenient for us to evaluate that

Expectation in the most general form, with as many free paramaters as possible.

Then in the special cases we encounter in pricing options, we only need to plug those

parameters into our known function to obtain the answer. This is the next and last

step in pricing the Knockout Barrier option by conditional Expectation.
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1.3 The function Hs(α, β, k, b)

Let W (t) be a Brownian motion and M(t) := max[0,t]W (s) its running maximum.

Define

Hs(α, β, k, b) := E
[
1{W (s)≥k}1{M(s)>b}e

αW (s)+βM(s)
]
.

Hs(α, β, k, b) has an explicit form for certain range of parameters (α, β, k, b) that we

will discuss in part 2 of Lecture 5 notes. For now let’s just observe the following:

(i) Since M(s) ≥ 0 by definition, we only need to consider b ≥ 0.

(ii) Since M(s) and W (s) are continuous random variables (a fact we will establish

for M(s)) we have

Hs(α, β, k, b) := E
[
1{W (s)≥k}1{M(s)>b}e

αW (s)+βM(s)
]

:= E
[
1{W (s)≥k}1{M(s)≥b}e

αW (s)+βM(s)
]

:= E
[
1{W (s)>k}1{M(s)>b}e

αW (s)+βM(s)
]

:= E
[
1{W (s)>k}1{M(s)≥b}e

αW (s)+βM(s)
]
.

Then we have

w(t, x) = e−(r+
α2

2
)(T−t)

[
xHT−t

(
α + σ, 0,

log(K/x)

σ
,
log(B/x)

σ

)
−KHT−t

(
α, 0,

log(K/x)

σ
,
log(B/x)

σ

)]
.

and the original Knockout Barrier option price is:

V (t) = 1{max[0,t] St≤B}
[
c(t, S(t))− w(t, S(t))

]
,

where

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x))

is given by Black-Scholes formula.

2 Lookback Option

Reading material: Ocone’s Lecture note 5 part 2, Shreve’s 7.4
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2.1 Preliminary discussion

Let S(t) satisfies

dSt = rStdt+ σStdWt.

Consider the Knock-out Barrier option with barrier b and strike price K:

VT = max
[0,T ]

St − ST .

The risk-neutral price V (t) can be expressed as

V (t) = E
[
e−r(T−t)VT |F(t)

]
= E

[
e−r(T−t) max

[0,T ]
{St} − ST |F(t)

]
= E

[
e−r(T−t) max

[0,T ]
{St}|F(t)

]
− S(t).

Now to do further analysis (to reduce Conditional Expectation to an Expectation

via the Independence Lemma) we may want to separate the term max[0,T ]{St} into

some expression involving Su, u ∈ [0, t] and Su, u ∈ [t, T ]. One way to do this is

max
[0,T ]
{St} = max

[0,t]
{St} ∨max

[t,T ]
{St}.

So far so good, but we need to do more work here, since the operator ∨ does not

”factor out” of the conditional expectation (we cannot factor max[0,t]{St} out of

E(.|F(t)) ). Looking at this in another way, the running max of S(t):

Y (t) = max[0,t] S(u) is not a Markov process.

However, there is a usual approach in studying Markov process like this: If X(t) is

not a Markov process, by increasing the components of X(t), we may still yet obtain

a Markov process.

In this case, we consider the two-component process (S(t), Y (t)) instead of just

Y (t). Then for s > t

Y (s) = max{Y (t),max
[t,s]

S(u)} = max{Y (t), S(t)eσM̂(s−t)},

where recall that we defined in Section 1

α :=
r − 1

2
σ2

σ

Ŵ (u) := W (t+ u)−W (t) + αu, u ≥ 0

M̂(u) := max
s∈[0,u]

Ŵ (s).
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Then since M̂ and Ŵ are independent of F(t) under the risk neutral measure, we

get that (S(t), Y (t)) is a Markov process under this measure as well (how to reach

this conclusion is left as a homework exercise).

We then have

V (t) = E
[
e−r(T−t)VT |F(t)

]
= E

[
e−r(T−t) max

[0,T ]
{St}|F(t)

]
− S(t)

= E
[
e−r(T−t) max{Y (t), S(t)eσM̂(T−t)}|F(t)

]
− S(t)

= v(t, S(t), Y (t)),

where

v(t, x, y) = e−r(T−t)E
[

max(y, xeσM̂(T−t))
]
− x.

2.2 Apply Girsanov

Similar to the discussion in section 1, v(t, x, y) involves the distribution of the

running max of a BM with drift, so we want to apply Girsanov’s theorem to

transform it to a BM. The result is

v(t, x, y) = e−r(T−t)EQ
[
eαŴ (T−t)−α

2

2
(T−t) max(y, xeσM̂(T−t))

]
− x,

where Ŵ now is a BM under Q.

Note that the expression inside expectation is not (yet) of the form provided by the

function Hs(α, β, k, b). Noting the fact that x > 0 since it is the stock price S(t), we

have

max(y, xeσM̂(T−t)) = y if M̂(T − t) < 1

σ
log(y/x)

max(y, xeσM̂(T−t)) = xeσM̂(T−t) if M̂(T − t) ≥ 1

σ
log(y/x).

Denoting

b :=
1

σ
log(y/x),

and note that the domain of interest for v(t, x, y) is y ≥ x > 0 thus b ≥ 0. Then

max(y, xeσM̂(T−t)) = y1M̂(T−t)<b + xeσM̂(T−t)1M̂(T−t)≥b

= y +
[
xeσM̂(T−t) − y

]
1M̂(T−t)≥b.
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Plug this back into the expectation, coupled with the fact that

EQ
[
yeαŴ (T−t)−α

2

2
(T−t)

]
= y,

after simplification we have

v(t, x, y) = e−r(T−t)y − x+ xe−(r+
α2

2
)(T−t)EQ

[
1{M̂(T−t)≥b}e

αŴ (T−t)+σM̂(T−t)
]

−ye−(r+
α2

2
)(T−t)EQ

[
1{M̂(T−t)≥b}e

αŴ (T−t)
]

= e−r(T−t)y − x+ xe−(r+
α2

2
)(T−t)HT−t

(
α, σ,−∞, b

)
−ye−(r+

α2

2
)(T−t)HT−t

(
α, 0,−∞, b

)
. (5)

Remark 2.1. You may question why we go into such great length to derive the long

expression for v(t, x, y) in this section or v(t, x) in section 1. You may argue that

once we have the expression of v(t, x, y) as an expectation, we can just simulate the

paths of S(t) and take the average to obtain the expectation. This is correct.

However, the work that we have done in expressing v(t, x, y) in the form of (5) can

be very helpful in increasing the efficiency of the computation. We have “simplified”

the computation (not in the expression, of course, but in the actual computation

time). The reason is the function Hs(α, β, k, b) is found explicitly via the cumulative

distribution of the standard normal, which we have very efficient algorithms to

compute. On the other hand, if you simulate the paths of S(t), also taking into

account its running max or when it’s knocked out, you will see that unless you use

some good algorithm, the efficiency of just taking the average won’t be too great.
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